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Abstract

In recent years, Analog Quantum Simulation (AQS) has emerged as a
powerful experimental platform for investigating the physics of quantum-
many body systems. This thesis presents a numerical study of trapped-
ion AQS for future experimental work on Excitation Energy Transport
(EET) and anharmonicity induced delocalization in molecular systems.
We propose prototype simulator setups by illustrating the exact mapping
between the target models and the trapped-ion simulator. We use nu-
merical simulations to guide future experiments. Our numerical results
on EET show good agreement with previous research. The contribution
of anharmonicity to the delocalization dynamics still requires further in-
vestigation. We also identify potential inconsistencies between different
signatures of quantum chaos, which could help develop theories in related
topics.
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1 Introduction

Quantum simulation experiments have emerged as a powerful tool for probing the behavior
of quantum systems in diverse fields, ranging from condensed matter physics and high-energy
physics to atomic physics and quantum chemistry [1]. In Analog Quantum Simulation (AQS),
a Hamiltonian and corresponding dissipative environment that exactly map to target natural
phenomenons will be engineered based on various simulator platforms, including atoms in opti-
cal lattice, electron spins in semiconductor quantum dots, trapped-ions, and cavity photons [2].
Rather than being restricted by the fixed properties of a natural system, the engineered simulator
Hamiltonian has tunable parameters which are usually controlled by external electromagnetic
fields. This enables researchers to explore a significantly wider parameter space, thereby enhanc-
ing the scope and efficiency of their investigations. The quantum nature of the simulator helps
avoiding the exponential growth of computational resources that a classical computer would re-
quire to solve quantum problems. A typical example of AQS is simulating the Hubbard model
with atoms in an optical lattice [3].

Trapped-ion systems are considered to be a highly efficient and versatile platform for implement-
ing AQS. A comprehensive review of related techniques can be found in [4]. A common setup
involves laser-cooled atomic ions within a vacuum chamber confined by radio-frequency pseudo-
potentials and manipulated via applied external lasers or microwaves. The intrinsic electronic
levels and quantum vibrations of the confined ions serve as an ideal basis for creating many-body
spin-phonon (boson) systems. With external optical fields, coherent and dissipative quantum
interactions of desired form and magnitude can be generated in these systems. Trapped-ion sys-
tems enable a large number of ionic qubits under control and well controlled interactions. The
long coherence time of qubits (on the order of minutes [5]) also allows the creation of quantum
states with high fidelity. Such advantages make the trapped-ion platform an ideal experimen-
tal framework for exploring fundamental phenomena in many-body quantum physics. In this
theoretical project, we examine the potential of applying trapped-ion AQS to solve problems in
molecular chemical physics, specifically focusing on energy transfer and quantum localization in
photosynthetic systems.

Photosynthesis is a fundamental process for organisms to harvest and store solar energy. Photons
are captured and converted into electronic excitation by antenna complexes. The energy captured
is then transferred into the reaction center for storage under the interaction with an external
environment through an Excitation Energy Transfer (EET) process [6, 7]. Depending on the
strength of exciton coupling V and environmental dissipation Γ, EET can be categorized into
incoherent (V ≪ Γ) regime, coherent (V ≫ Γ) regime, and an intermediate regime.

Numerous quantum physics and biochemistry research efforts have been conducted to develop
theories about EET. A recent in-depth review of related topics can be found in [8]. In general, the
corresponding quantum system is described in displaced harmonic oscillator formalism as a spin
system coupled by molecular phonon modes [9]. Transfer mechanism in incoherent regime can
be well explained quantitatively using Forster and generalized Forster resonance energy transfer
theory based on equilibrium Fermi Golden Rule approach [10, 11]. Physics in the coherent
regime can be modeled by Redfield Theory based on open quantum system dynamics which
describes the environment as an external heat bath with correlation functions determined by
spectral density function J(ω) [12, 13]. Various approaches have also been employed to handle
the intermediate regime, including coherent modified Redfield Theory and hierarchical equation
of motion formalism [14, 15].

Many realms of EET still remain unexplored, especially in the intermediate regime where most
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realistic photosynthetic processes takes place. Experimental and numerical research has shown
that quantum coherence and molecular vibrational modes have important effects on the efficiency
of EET [16, 17, 18, 19]. Evidence has also been found for the contribution of entanglement to
EET [20, 21].

On the other hand, spin-phonon systems in photosynthetic processes may serve as useful models
for studying quantum delocalization, chaotic behavior in which a closed quantum system ther-
mally equilibrates under its own dynamics. The spread of quantum entanglement will effectively
remove the system’s memory of its initial local properties such that in long-time thermal equilib-
rium the system can be characterized by thermodynamic quantities [22]. Numerical studies on
photosynthetic systems have identified transitions from coherent organized behavior to chaotic
delocalization phenomenon, induced by quantum transport networks consisting of vibrational
states coupled with Fermi-resonance anharmonicity [23, 24, 25].

More experimental research is required to investigate the validity of theories and discover new
phenomena in the above fields. Related quantum simulation experiments have been conducted
using semiconductor quantum dots [26, 27], Redberg Atoms [28], and trapped-ion system [29, 30].
In this thesis, We demonstrate the feasibility of reconstructing target Hamiltonians for vibration-
environment assisted EET and anharmonicity induced quantum delocalization in trapped-ion
systems from a theoretical perspective. We propose several setups of prototype simulators for
preliminary AQS experiments. Since the quantum complexity of these setups is still within the
capability of a classical computer, we also use various numerical methods to simulate experimental
results. Overall, this project lays the theoretical groundwork and serves as a pilot study for a
series of forthcoming experimental investigations. Its general aim is to determine the appropriate
parameter ranges and provide valuable insights into potential outcomes.

In Section 2, we discuss the quantum models for target phenomena of interest. In sections 3 and
4 we review the physics of trapped-ion systems interacting with external light fields and illustrate
how the target Hamiltonian/dissipative environment can be generated. We discuss the numerical
methods and approximations that will be used to study the quantum dynamics of the simulator
in Section 5. We present the results of the numerical simulations followed by a discussion of their
significance in Section 6. Conclusions are presented in Section 7.

2 Target Models for Simulation

In this section we discuss the Hamiltonian of each target model in details1.

2.1 EET in Donor-Acceptor Pair

The first model of interest for vibrational-environment assisted EET is consisted of a pair of donor
and acceptor molecular sites coupled to a shared set of n intermolecular modes. The system
weakly interacts with an external heat bath, or reservoir, at temperature T . The electronic
degree of freedom of each site is considered as a spin 1/2 space with a ground state and an
excited state. The Hamiltonian of the system can be described by[18, 26]:

Ĥ =

2∑
i=1

Eiσ̂
i
z + J12

(
σ̂+
1 σ̂

−
2 + h.c.

)
+

n∑
m=1

ωmâ
†
mâm +

2∑
i=1

n∑
m=1

λim
(
â†m + âm

)
σ̂iz. (2.1)

1In this thesis we use energy scale of ℏ for convenience by setting ℏ = 1 in all Hamiltonians.
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Ei is the energy difference between the electronic excited state and ground state for site i. J12
is the Forster exciton coupling coefficient between 2 sites. The spin space ladder operators are
defined as:

σ̂± = (σ̂x ± iσ̂y)/2, (2.2)

where â†m, âm are the phonon ladder operators for the mth phonon space. λim is the spin-phonon
coupling strength between site i and vibrational mode m.

The model assumes a sufficiently weak incoherent phonon interaction between the external reser-
voir and the spin-phonon system. Under Born-Markov approximation[31], this interaction can
be described by a Lindbladian super-operator:

L̂ (ρ̂) =
∑
m

Γ−
m

(
âmρ̂â

†
m − 1

2

[
â†mâm, ρ̂

])
+ Γ+

m

(
â†mρ̂âm − 1

2

[
âmâ

†
m, ρ̂

])
. (2.3)

Dissipation rates Γ−
m,Γ

+
m describes how fast vibrational mode m loses/gains one phonon exci-

tation under the effect of thermal reservoir. The exact value is determined by the property of
reservoir [19]. More details on the Limbladian super-operator L̂ will be discussed in section 4.5.

The electronic EET phenomenon is described by the dynamics from a |↑↓⟩ spin state to |↓↑⟩,
in which the excited electron is transferred from site 1(donor) to the site 2 (acceptor). The
donor-acceptor pair can be effectively reduced to a system of 1 site. Consider the spin operators
in product space |00⟩ , |10⟩ , |01⟩ , |11⟩ with convention |0⟩ ≡ |↑⟩ , |1⟩ ≡ |↓⟩

A1σ
1
z +A2σ

1
z

= (A1 +A2)(|00⟩⟨00| − |11⟩⟨11|) + (A1 −A2)(|01⟩⟨01| − |10⟩⟨10|),
J12

(
σ̂+
1 σ̂

−
2 + h.c.

)
= J12(|01⟩⟨10|+ |01⟩⟨10|).

(2.4)

The terms (|00⟩⟨00|, |11⟩⟨11|) have no effect on initial state |01⟩. The effective spin space of the
system is spanned by |0⟩ ≡ |01⟩ , |1⟩ ≡ |10⟩. In this new basis the total interaction Hamiltonian
becomes:

Ĥ ′ =
∆E

2
σ̂z + V σ̂x +

n∑
m=1

ωmâ
†
mâm +

N∑
m=1

gm
(
â†m + âm

)
σ̂z. (2.5)

These new coefficients maps to parameters in the two-site system following:

V = J12, gm = λ1m − λ2m,∆E = 2(E1 − E2). (2.6)

The one-site system coupled to a single mode has been well studied in [30] and it is easier to
realize experimentally compared to the two-site system.

2.2 Anharmonicity induced Quantum Delocalization

The second model to study is a closed quantum system based on the one-site model for EET
with anharmonic coupling between different modes [25]:

Ĥ =
∆E

2
σ̂z+V σ̂x+

∑
α

n∑
m=1

ωm(âαm)†âαm+
∑
α

n∑
m=1

gαm
(
(âαm)† + âαm

)
σ̂z+

∑
m

∏
α

Θm(â
m+

α
α )†â

m−
α

α .

(2.7)
The last term represents the anharmonic coupling where âαm is the phonon operator for vibrational
mode m at degree of freedom α. These modes may come from intermolecular vibrations in a
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complicated configuration. The anharmonicity is assumed to be dominated by Fermi resonance
(cubic) terms in form â†b̂b̂, where â, b̂ are ladder operators for two distinctive phonon spaces.
Another closed system of similar format involves an extended spin space of three sites:

Ĥ =

2∑
i=1

∆Ei
2

σ̂zi +

3∑
i=1

Viσ̂
x
i +

n∑
m=1

ωmâ
†
mâm+

3∑
i=1

N∑
m=1

gim
(
â†m + âm

)
σ̂zi +

∑
m

∏
α

Θm(b̂
m+

α

α )†b̂
m−

α
α .

(2.8)

3 Trapped Ions Systems

3.1 Quantum Dynamics of Trapped Ions

In this section we review some important results about basic properties of an ion trap [32]. The
parameters to be introduced are essential for the derivations in the next few sections.

3.1.1 Classical Harmonic Motion

A trapped-ion chain can be confined in a linear RF trap [33], where the equilibrium positions are
determined by the interplay of Coulomb interaction and harmonic trapping potentials [34]. Let us
set up the coordinate system as shown in Figure 1. By setting the voltages on the trap electrodes
in the appropriate way, the harmonic frequency of the potential can be set to ωx = ωy > ωz for
confinement in x, y, z directions. ωx, ωy are assumed to be sufficiently larger than ωz such that
the ions form a 1D chain along ẑ axis in stable equilibrium.(the exact condition for the 1D chain
will be discussed afterwards) With the position coordinates defined in Figure 1, the mass of ion
being M and the charge carried being Q, the Lagrangian of the N-ion system can be written
using the equilibrium position x̄ni and displacement from the equilibrium ϵni:

L = T−V =
M

2

N∑
n=1

3∑
i=1

ϵ̇2ni −
M

2

N∑
n=1

3∑
i=1

ω2
i (x̄ni + ϵni)

2−1

2

Q2

4πε0

N∑
n ̸=m

[
3∑
i=1

(x̄ni + ϵni − x̄mi − ϵmi)
2

]− 1
2

.

(3.1)

Figure 1: Definition of coordinates for ions confined in a stable configuration. xni is the position
coordinate of ion n in direction i, with i = 1, 2, 3 for x, y, z directions, respectively. The equilibrium
position and displacement from equilibirum are labeled as x̄ni, εni, respectively.

Under an order-3 Taylor expansion assuming ϵni → 0, L can be transformed into a combination
of quadratic terms and non-quadratic terms:

L→ Lz + Lxy + Lah (3.2)
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Lz and Lxy describe motion due to the harmonic part of the potential in axial and radial direc-
tions, respectively.

Lz =
M

2

[
N∑
n=1

ϵ̇2n3 − ω2
3

N∑
m,n=1

Amnϵm3ϵn3

]

Lxy =
M

2

2∑
i=1

[
N∑
n=1

ϵ̇2ni − ω2
3

N∑
m,n=1

Bmnϵmiϵni

]
.

(3.3)

The elastic tensors A,B are related by:

Bmn =

(
ω2
x

ω2
z

+
1

2

)
δmn − 1

2
Amn. (3.4)

The exact expression of A is given in Appendix 8.1, A only depends on the axial confining fre-
quency ωz while B depends on both axial and radial frequencies. Since the confining frequencies
are the same in x̂, ŷ directions, the harmonic Lagrangian for these two degrees of freedom will
also take the same form (described by the same elastic tensor B). It is then sufficient to solve
the dynamics in either direction. We label this direction as radial in the following derivations.

It can be shown that A is always positive definite. B, however, is positive definite if and only
if the assumption of 1-d equilibrium holds. The critical condition for this case is determined by
the trap confining frequencies:

α = ω2
z/ω

2
x < 2/(µN − 1), (3.5)

where µN is the largest eigenvalue of tensor A. If the above condition is violated, the transverse
oscillation will be unstable which results in a ’zig-zag’ crystal structure [33]. In this thesis, only
the stable configuration is considered. The anharmonic coupling (3rd order) can be written in a
compact form:

Lah = −Mω2
3

2l

N∑
m,n,p=1

Cmnpϵp3 (2ϵm3ϵn3 − 3ϵm1ϵn1 − 3ϵm2ϵn2), (3.6)

where Cmnp is a rank-3 tensor and its explicit form is given in Appendix 8.1.

The classical motion due to the harmonic terms can be solved analytically by diagonalizing the
positive definite tensors A,B [35]:

q′Am = QAm cos (νmt+ ϕAm),

q′Rm = QRm cos (ωmt+ ϕRm),
(3.7)

for the axial and radial harmonic motion. Here, q′m is the mth component of displacement
vector in normal coordinates, which corresponds to mth eigenmode and eigenfrequency of the
axial/radial motion. Qm, ϕm are constants determined by initial conditions and

νm = ωz
√
µm,

ωm = ωz
√
κm,

(3.8)

are the axial and radial eigenfrequencies of the system, νm is the eigenvalue of A and κm is
the eigenvalue of B with m = 1, 2, ..., N . We label the COM mode for both axial and radial
direction as m = 1, corresponding to the minimum νm and the maximum ωm. The other modes
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are labeled with their eigenvalues in increasing/decreasing orders for axial/radial directions,
respectively. For instance, ν2 for the second smallest axial eigenfrequency and ω2 for the second
largest radial eigenfrequency. The normal displacement vector q⃗′ is related to the displacement
q⃗ in original coordinates defined in Figure 1 by:

q⃗A = ÛAq⃗
′
A,

q⃗R = ÛRq⃗
′
R.

(3.9)

Û is a unitary transformation matrix that diagonalizes the corresponding elastic tensor with each
column being an eigenvector of the tensor, ÛT = Û−1. Also note that since [A,B] = 0, they
share exactly the same set of eigenmodes but the corresponding eigenvalues will be different.

3.1.2 Quantum Hamiltonian

Consider the radial degree of freedom, in normal coordinates, the Hamiltonian is given by:

H =
∑
m

M

2
(q̇′

2

m + ω2
mq

′2
m) =

∑
m

p′m
2

2M
+
M

2
ω2
mq

′2
m. (3.10)

In the formalism of quantum ladder operators, this Hamiltonian can be rewritten as:

Ĥ =
∑
m

ωm

(
â†mâm +

1

2

)
, (3.11)

where the ladder operators are defined as âm =
√

Mωm

2

(
q̂′m + ip̂′m

Mωm

)
and â† =

√
Mωm

2 (q̂′m −
ip̂′m
Mωm

) We denote âm, b̂m, ĉm and the adjoint operators as ladder operators for the motion in
the ẑ, x̂, ŷ directions, respectively. The harmonic part of motion Hamiltonian of the trapped-ion
system is given by:

Ĥh =

N∑
m=1

νmâ
†
mâm + ωm

(
b̂†mb̂m + ĉ†mĉm

)
. (3.12)

The anharmonic part of the system can be considered as a high order perturbation and expressed
in the basis of the harmonic part, following the approximation made in Section 4.2 of [32]:

Ĥah = −3εωz

N∑
m,n,p=1

Dmnp

(µpγmγn)
1
4

[
2âp

(
b̂†mb̂n + ĉ†mĉn

)
+ âp

(
b̂†mb̂

†
n + ĉ†mĉ

†
n

)
+ h.c.

]
, (3.13)

where p is the index for axial modes, and m, and n are indices for radial modes. ωz is the axial
trap confining frequency and

ε =
1

4l0

√
1

2Mωz
.

The tensor D is related to tensor C by

Dpqr =

N∑
l,m,n=1

Clmnv
(p)
l v(q)m v(r)n . (3.14)

Here v
(p)
l represents the l-th element of the p-th eigenmode (same for transverse/axial vibration).

11



For convenience, we denote the sum of harmonic and anharmonic parts as the total motion
Hamiltonian of the N-ion system:

Ĥmotion = Ĥh + Ĥah. (3.15)

For all models we are interested in, it will be sufficient to utilize one of the two radial vibrational
degrees of freedom in terms of spin-phonon interactions (we choose the x⃗ direction). Motion in
the other direction (y⃗) can be neglected as they are not coupled to the spin part of the system.
Therefore, in the following derivations, terms related to ĉ in Ĥmotion will be neglected.

3.2 Ion Interaction with Classical Light Field

In this section, we first construct the Hamiltonian for semi-classical dipole interactions of a single
ion with a single laser drive or a set of two sideband drives in the radial direction. (In the actual
experimental setup we will also apply drives in axial z⃗ direction, which can be derived in a similar
method.) Based on this, we derive the total Hamiltonian of the N ion system interacting with
lasers. Then we further transform and simplify the results using some approximations.

3.2.1 Dipole Approximation

Assuming a laser field propagating in radial x⃗ direction (we use x⃗ instead of x̂ to avoid confusion
with operators). Within semi-classical approximations the laser field is described by a classical
EM wave:

E⃗ = E⃗0 cos(k⃗r⃗ − ωLt+ ϕ), k⃗ = kx⃗, (3.16)

where ωL is the laser frequency, k is the laser wavenumber. The index j is used to identify
each ion interacting with the laser, and m is used for the phonon modes. We treat the ion as a
two-level system [36]. The two states are described by the ionic Hamiltonian:

Ĥion =
∑
j

ω0

2
σ̂jz, ω0 = ωhf , (3.17)

where ωhf is the hyper-fine splitting frequency of Yb171 [33]. For the jth ion, the laser-ion
interaction Hamiltonian is, under the dipole approximation, given by:

Ĥj
I = −̂⃗

dj ·
̂⃗
E, (3.18)

where
̂⃗
dj is the effective electric dipole moment for ion j, The Rabi frequency is defined by [31]:

Ωj ≡ ⟨g| ̂⃗dj · E⃗0 |e⟩ . (3.19)

Here, |g⟩ , |e⟩ are the ground and excited states of the ion, respectively. The explicit expression
for the interaction Hamiltonian is:

Ĥj
I =

Ωj
2

(
σ̂−
j + σ̂+

j

) (
ei(k⃗·

̂⃗rj−ωLt+ϕ) + e−i(k⃗·
̂⃗rj−ωLt+ϕ)

)
=

Ωj
2
Ĥj
sIĤ

j
pI . (3.20)

where we defined the spin and phonon interaction Hamiltonian as:

Ĥj
sI ≡

(
σ̂−
j + σ̂+

j

)
, Ĥj

pI ≡
Ωj
2

(
ei(k⃗·

̂⃗rj−ωLt+ϕ) + e−i(k⃗·
̂⃗rj−ωLt+ϕ)

)
.
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We rewrite ̂⃗rj ≡ ¯⃗rj + ̂⃗ϵj in terms of displacement from equilibrium. The scalar k⃗ · ¯⃗rj can be
absorbed into the phase as it remains constant. We denote:

k⃗ · ̂⃗rj → k⃗ · ̂⃗ϵj = kx̂j , xj =
∑
m

TjmXm, (3.21)

where xj is expanded in terms of normal coordinates Xm, TR = [v1, ..., vN ] is the radial similarity
transformation matrix, as discussed in Eq. (3.9) and Tjm is the j,mth index of TR. Using

the formalism of ladder operators, X̂m = X0m(b̂†m + b̂m), with X0m ≡
√

1/2Mωm being the
characteristic length scale of mode m. We define the tensor

ζim ≡ kTjmX0m. (3.22)

Recalling that k⃗ = (k, 0, 0), we can rewrite the displacement operator in the form:

k⃗ · ̂⃗rj = N∑
m=1

ζjm

(
b̂†m + b̂m

)
. (3.23)

The total Hamiltonian of the system can be then obtained by combining Eqs. (3.15),(3.17), and
(3.20):

Ĥ = Ĥion + Ĥmotion + ĤI . (3.24)

3.2.2 Ordinary Interaction Frame

We simplify Eq. (3.24) by rotating into an “ordinary” interaction frame in which Ĥh, Ĥion are
cancelled out. We therefore define unitary operator:

Û (t) = exp
(
−iĤ0t

)
, Ĥ0 = Ĥion + Ĥh, (3.25)

The Hamiltonian in the new interaction frame is given by the transformation [31]:

Ĥ ′ = i

(
∂

∂t
Û†

)
Û + Û†ĤÛ , (3.26)

because [Ĥ0, Û (t)] = 0, i
(
∂
∂t Û

†
)
Û = 0,

Ĥ ′ = Û†

 N∑
j=1

Ĥj
I + Ĥah

 Û

= Ĥ ′
I + Ĥ ′

ah.

(3.27)

In the following derivation we neglect the ion index j for simplicity. This index will be recovered
again at the end of this subsection. We first derive the form of ion-laser interaction term and
then derive the form of anharmonic term in this frame. For detailed derivations of Eqs. (3.28),
(3.29), see Appendix B. The transformation of spin part of ĤI is given by:

Û†ĤsI Û = e
iω0t

2 σ̂z σ̂xe
− iω0t

2 σ̂z

= eiω0tσ̂+ + e−iω0tσ̂−.
(3.28)
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The transformation of the phonon part can be derived in Lamb-Dicke Regime (kX0m ≪ 1):

Û†ĤmI Û =
Ω

2
Î
[
e−i(ωLt−ϕ) + ei(ωLt−ϕ)

]
+

Ω

2

∑
m

iζm

(
b̂†me

iωmt + b̂me
−iωmt

)
σ̂+e−i(δt−ϕ)

+
Ω

2

∑
m

−iζm
(
b̂†me

iωmt + b̂me
−iωmt

)
σ̂−ei(δt−ϕ).

(3.29)

Let us combine the above transformations for spin and phonon parts and define δ = ωL − ω0,
with Rotating Wave Approximation (RWA)

ω0 + ωL ≫ |ω0 − ωL| = |δ| (3.30)

Û†(ĤsIĤmI)Û =
Ω

2
Î
[
σ̂+e−i(δt−ϕ) + σ̂−ei(δt−ϕ)

]
+

Ω

2

∑
m

iζm

(
b̂†me

iωmt + b̂me
−iωmt

)
σ̂+e−i(δt−ϕ)

+
Ω

2

∑
m

−iζm
(
b̂†me

iωmt + b̂me
−iωmt

)
σ̂−ei(δt−ϕ),

(3.31)

where ωm is the angular radial eigenfrequency defined in (3.8).

For a single drive at frequency ωL = ω0, δ = 0, the first term in (3.31) is at resonance, the second
and third terms rotate at ωm/2π ∼ MHz. This type of drive can be used to generate pure spin
operators in form:

Ω

2

[
σ̂+eiϕ + σ̂−e−iϕ

]
. (3.32)

If a set of sideband laser drives at frequencies µ such that

ωb = ω0 + µ, ωr = ω0 − µ, (3.33)

are applied, the second and third term in Eq.(3.31) can be resonantly addressed. Let us substitute
ωL with ωb, ωr, the second and third term in (3.31) become:

Ĥb =
Ω

2

[∑
m

iζm

(
b̂†me

iωmt + b̂me
−iωmt

)
σ̂+e−i(µt−ϕb) −

∑
m

iζm

(
b̂†me

iωmt + b̂me
−iωmt

)
σ̂−ei(µt−ϕb)

]

Ĥr =
Ω

2

[∑
m

iζm

(
b̂†me

iωmt + b̂me
−iωmt

)
σ̂+ei(µt+ϕr) −

∑
m

iζm

(
b̂†me

iωmt + b̂me
−iωmt

)
σ̂−e−i(µt+ϕr)

]
.

(3.34)

Summing over these two terms:

Ĥ ′
I = Ĥr + Ĥb

= Ω
∑
m

ζmσ̂
ϕs cos(µt− ϕm)(b̂me

−iωmt + b̂†me
iωmt),

(3.35)

where
σ̂ϕs = σ̂+eiϕs − σ̂−e−iϕs .
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The phase factors are defined as:

ϕm =
1

2
(ϕb − ϕr) , ϕs =

1

2
(ϕb + ϕr) +

π

2
.

The first term of (3.31) rotates at |δ| = µ ∼ ωm ∼ MHz for experimental setup and it only
couples to spin degrees of freedom. When pure spin operators are applied, this term can be
considered as fast varying and its effect can be neglected.

Recovering the index of ions coupled to the laser j, we have:

Ĥ ′
I =

∑
j

Ωj σ̂
ϕs

j

N∑
m=1

ζjm cos(µt− ϕm)(b̂me
−iωmt + b̂†me

iωmt) (3.36)

For the anharmonic term, using Eq. (3.13) it can be shown that (see Appendix A):

Ĥ ′
ah = −3εωz

N∑
m,n,p=1

[
Dmnp

(γmγnµp)
1
4

(
2âpb̂

†
mb̂ne

−i∆−
mnpt + âpb̂

†
mb̂

†
ne
i∆+

mnpt
)
+ h.c.

]
. (3.37)

The rotating frequencies are defined as:

∆±
mnp = ωm ± ωn − νp. (3.38)

As a short summary, the total Hamiltonian in ordinary frame will be composed of Eq. (3.32)
(pure spin), Eq. (3.36) (spin-phonon coupling), Eq. (3.37) (anharmonicity).

4 Mapping to Target Models

In this section we will show how the total Hamiltonian of trapped-ion system can map to the
target models in Section 2. We start with a general discussion of how to create the desired spin
operators and our capability of creating anharmonic coupling between different modes. Then
we introduce the resonant interaction frame and show how the time-independent Hamiltonian in
each model can be realized.

For all models, we use a system of 3 ions as a prototype simulator. Compared to the configuration
of Ref. [30], it has richer set of eigenmodes (3 modes in each vibrational degree of freedom) such
the physics of different target models can be captured. This configuration could also be easily
realized experimentally in terms of stable confinement. Under appropriate approximations, this
system is small enough such that it is still within the capability of a classical computer, which
makes the numerical simulations available.

4.1 Spin-only Operators

To map to the target models, σ̂x and σ̂z operators need to be realized simultaneously. By applying
drives at ωL = ωhf it is possible to create a Ω′

2 σ̂x term by setting the spin phase ϕs = π/2 and

−Ω′

2 σ̂y by setting ϕs = 0. By applying a global rotation

R̂x(π/2) = exp(−iσ̂xπ/2), (4.1)
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we can rotate into σy eigenbasis:

Ω′

2
σ̂x → Ω′

2
σ̂x,

− Ω′

2
σ̂y → Ω′

2
σ̂z.

(4.2)

For the spin-phonon coupling term in Eq. (3.36), we set ϕs = 0, ϕm = 0 by choosing the
sideband phases to be ϕr = ϕb = −π/2. The same rotation will transform σ̂y operator to
σ̂z. The electronic coupling coefficients mentioned for these terms are determined by the Rabi
frequency Ω, which can be controlled by tuning the power of laser drives applied.

4.2 Donor-Acceptor Pair System

Two equivalent Hamiltonians for Donor-Acceptor pair system have been discussed in Section 2.
In order to map Eq. (3.36) to the phonon and spin-phonon coupling part in Eqs. (2.1) and
(2.5), we follow the procedure in [37] and rotate into a “resonant” interaction frame in which
the Hamiltonian of the ion chain becomes time-independent. Consider a set of 2 sideband radial
drives with frequencies defined in Eq. (3.33) and assume all anharmonic terms are detuned off-
resonance so that the anharmonic coupling can be neglected. By adding and subtracting a term
Ĥδ =

∑
m δmb̂

†
mb̂m, the total Hamiltonian becomes:

Ĥ = (Ĥion + Ĥh + Ĥδ) + (ĤI − Ĥδ). (4.3)

We redefine the unitary transformation in Eq. (3.25) with

Ûres (t) = exp
(
−iĤres

0 t
)
,

Ĥres
0 = Ĥion + Ĥh + Ĥδ = Ĥion + µ

∑
m

b̂†mb̂m.
(4.4)

The Hamiltonian of the ion system in this new frame becomes

Ĥres
I = Û†

res

(
ĤI − Ĥδ

)
Ûres

=
∑
j

Ωj
2
σ̂ϕs

j

∑
m

ζm

[
b̂m

(
e−iϕm + e−i(2µt−ϕm)

)
+ b̂†m

(
eiϕm + ei(2µt−ϕm)

)]
−

N∑
m=1

δmb̂
†
mb̂m,

(4.5)

(see Appendix 8.2 for derivation).

Within the RWA, we can neglect off-resonant terms rotating at 2µ. The condition for this RWA
needs to be deduced from Eq. (3.36) in resonant frame. The actual approximation made is
neglecting the term rotating at µ+ ωm by assuming:

|µ− ωm| = δm ≪ µ+ ωm. (4.6)

Therefore, a small detuning δm is favorable for generating a time-independent Hamiltonian. With
this approximation, we do a global rotation and adjust the phase following Eq. (4.1), obtaining:

Ĥres
I =

∑
j

Ωj
2
σ̂zj

N∑
m=1

ζjm

(
b̂m + b̂†m

)
−

N∑
m=1

δmb̂
†
mb̂m. (4.7)
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The detuning can be set negative δm < 0 by adjusting the applied laser frequency, so that Ĥres
I

has exactly the same form as the phonon and spin-phonon term in Eqs. (2.1) and (2.5).

Figure 2 shows setup of simulator for the two site system in (2.1). In our 3-ion prototype
simulator ion 1 and ion 2 are assigned to be the two molecular sites. Two resonant single radial
drives as described in Eq. (4.1) can be applied on ion 1, ion 2, respectively, creating E1σ̂

1
z+E2σ̂

2
z

term with E1 > E2. Details on generating spin exchange term J12(σ̂
+
1 σ̂

−
2 + h.c.) is discussed

in section 2.3.3 of Ref. [38]. As described above, a set of sideband radial drives will generate
phonon and spin-phonon coupling terms. We set the effective frequency µ ≲ δr such that all
δm < 0. The total Hamiltonian for this two-site simulator is then given by:

Ĥ =

2∑
j=1

Ej σ̂
j
z + J12

(
σ̂+
1 σ̂

−
2 + h.c.

)
+

2∑
j=1

Ωj
2
σ̂zj

N∑
m=1

ζjm

(
b̂m + b̂†m

)
−

N∑
m=1

δmb̂
†
mb̂m. (4.8)

The remaining ion 3 will serve as a coolant to induce the dissipation in Eq. (2.3) by applying
Raman sideband cooling. By applying continuous red sideband on the coolant ion at eigen-
frequency ωm can effectively generate annihilation b̂m operator on mode m with cooling rate
controlled by the corresponding Rabi frequency and tensor element ζjm (see Section 2.3.6 of
[33] for details). To ensure this sideband is only coupled to the coolant ion, we can implement
individual addressing or sympathetic cooling (using different isotopes for coolant and site ions,
see [39]). Under this cooling scheme, the phonon modes of the ion-system can be considered as
an effective external reservoir. The Lindbladian in Eq. (2.3) then takes form [30]:

L̂ (ρ̂) =
∑
m

γm (1 + n̄m)

(
b̂mρ̂b̂

†
m − 1

2

[
b̂†mb̂m, ρ̂

])
+ γmn̄m

(
b̂†mρ̂b̂m − 1

2

[
b̂mb̂

†
m, ρ̂

])
, (4.9)

where γ is an effective cooling rate controlled by laser power and n̄m is the average phonon
number of vibrational mode m at given thermal temperature T .

Figure 2: Experimental scheme for simulating two-site donor-acceptor pair system. Ion 1,2 are 171Yb+

assigned as molecular sites while ion 3 is 172Yb+ used as a coolant. The initial and final spin states in
a typical EET are shown on the right.

Crucially the effective cooling rate has a dependence on ζ, therefore choosing a different ion
as coolant will result in different cooling rates. For instance, it is not possible to effectively
generate dissipation on the tilt mode if ion 2 is used as the coolant (ζ22 = 0). Assuming the
coolant index is j′, to make the simulation more realistic, we explicitly add this dependence by
further modifying the Lindbladian to:

L̂ (ρ̂) =
∑
m

|Tj′m|γm (1 + n̄m)

(
b̂mρ̂b̂

†
m − 1

2

[
b̂†mb̂m, ρ̂

])
+ |Tj′m|γmn̄m

(
b̂†mρ̂b̂m − 1

2

[
b̂mb̂

†
m, ρ̂

])
,

(4.10)
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Tj′m is the element of unitary transformation matrix as defined in (3.22). In a similar way we can
map the simulator to one-site equivalent system following the scheme in Figure 3. We therefore
can set just ion 1 as a molecular site while the other two ions provides the vibrational modes
for the system. Ion 3 again serves as the coolant while ion 2 has the only function of enriching
the vibrational mode structure. The terms ∆E

2 σ̂z + V σ̂x in Eq. (2.5) can be constructed with 2
resonant drives applied on ion 1 with appropriate phases while phonon and spin-phonon coupling
terms are generated as explained above. The total Hamiltonian for a one-site simulator is given
by:

∆E

2
σ̂z + V σ̂x +

∑
j

Ωj
2
σ̂zj

N∑
m=1

ζjm

(
b̂m + b̂†m

)
−

N∑
m=1

δmb̂
†
mb̂m. (4.11)

Figure 3: Experimental scheme for simulating one-site donor-acceptor pair system. Ion 1 is 171Yb+

assigned as molecular site while ion 2, 3 are 172Yb+ and ion 3 is assigned as a coolant. The initial and
final spin states in a typical EET are shown on the right.

The two-site system is currently not realizable for our lab since we are not capable of applying
individual laser addressing to the ions at the moment. The one-site system is experimentally
favorable. We can use 171Yb+ for ion 1 172Yb+ for ion 2, 3 so that the global resonant and
sideband drives would only couple to ion 1. For purpose of this project, we will do numerical
simulations to explore the properties of the two-site system coupled to multiple phonon modes
and show its equivalence to the well-studied one-site systems. These simulations will also serve
as a benchmark for our numerical methods.

4.3 Anharmonic Phonon Coupling

Eqs. (3.37) and (3.38) show that we are able to set anharmonic couplings for one specific set of
modes m,n, p on resonance by tuning the trap frequencies. The resonance condition is given by
setting one of ∆±

mnp = 0. Also note that only a few of the coupling coefficients are non-zero due
to the symmetry of tensor D (see Fig. 4). A table of numerical values of Dmnp can be found in
[32] for different ion numbers.

For the prototype simulator, we follow the same setup as in Ref. [40]. We choose m = n = 3,
p = 2 and create a Fermi-resonant coupling between radial rocking mode and axial tilt mode.
This will give a simple form of resonance condition and a time-independent anharmonic term in
the resonant frame to be introduced:

∆+
332 = 2ω3 − ν2 = 0. (4.12)

The trap frequency under this resonance condition can be solved analytically for 3-ion system:

fz =

√
20

63
fx. (4.13)
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(a) (b)

Figure 4: Plot of non-zero anharmonic coupling coefficients and correponding oscillating frequencies,
with trap confinie frequencies fx = 3.50MHz, fz = 1.97MHz such that [3, 3, 2] is resonant.
The non-zero anharmonic terms are [m,n, p] = [2, 2, 2] ,[2, 3, 3],[3, 2, 3],[3, 3, 2] for a system of 3 ions. (b)
shows the smallest off-resonance ∆+

mnp is on the order of 0.1MHz

The term ∆− = −νp ∼ MHz while the other sets of modes has ∆+
mnp ≳ 0.1MHz (Fig. 4) with

RWA we can neglect the term oscillating at all other frequencies in (3.37), the anharmonic term
becomes:

Ĥ ′
ah = Cah(a

†
tbrbr + atb

†
rb

†
r),

Cah = −3εωz
D332

(γ3γ3µ2)
1
4

.
(4.14)

Here we use label r,t, for operators on radial rocking mode and axial tilt mode, respectively.

The magnitude of coupling coefficient Cah only depends on the trap frequency. The direct
modulation of Cah is restricted because the appropriate operating regime of the trap for stable
confinement in our lab is 2 to 4 MHz for fx. However, we can effectively tune the coupling
strength by shifting away from the resonance with an increasing anharmonic detuning defined
as:

δah = 2ω3 − ν2. (4.15)

We also investigate possible resonance anharmonic coupling in configurations of more than 3
ions. In this case not all non-zero Dmnp are realizable in a stable configuration and there is no
analytical solution for the eigenfrequencies. For a given radial confining frequency fx and mode
index [m,n, p], we compute resonant fz by numerically solving:

ωm + ωn − νp = 0, (4.16)

under the constraint of stability condition from Eq.(3.5).

4.4 Anharmonic Spin-phonon System with Two Drives

The first type of trapped-ion setup for the anharmonic system discussed in section 2.2 involves
2 sideband drives coupling to axial and radial directions, respectively. The experimental scheme
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is shown in Fig.5. From numerical simulations we found this setup that is most likely to induce
delocalization. Related details will be discussed in section 5. The spin part in Eqs. (2.7),
(2.8) can be created in the same way as in section 4.3. For the remaining part of the target
Hamiltonian, consider two distinctive sets of sideband drives:

ωLbl = ω0 + µl, ωLrl = ω0 − µl. (4.17)

with electric field index labeled by l = 1, 2 for axial and radial directions.
Using Eqs. (3.25), (3.26), the laser-ion interaction Hamiltonian in ordinary interaction frame is
given by:

Ĥ ′
I = Ĥ ′

Ix + Ĥ ′
Iz

=
∑
j

Ω1j

N∑
m=1

ηjmσ̂
ϕs

j cos (µ1t− ϕ1m)
(
âme

−iνmt + â†me
iνmt

)
+
∑
j

Ω2j

N∑
m=1

ζjmσ̂
ϕs

j cos (µ2t− ϕ2m)
(
b̂me

−iωmt + b̂†me
iωmt

)
,

(4.18)

ζ follows the same definition as in section 3.2 and ηjm = k1TA,jmZ0m, TA is the similar transfor-
mation matrix where each column vector is the transverse eigenmode of the elastic tensor A for
axial motion, Z0m =

√
1/2Mνm is the characteristic length scale of mode m in axial direction.

âm is the phonon ladder operator for axial mode m.

The anharmonic term transform into Eq. (3.37) with resonant coupling condition given by Eq.
(3.38). In the same way as previous section we can rotate into resonant interaction frame by
defining:

Ĥδ =
∑
m

(δAmâ
†
mâm + δRmb̂

†
mb̂m)

Ĥtot =
(
Ĥion + Ĥh + Ĥδ

)
+ (ĤI + Ĥah − Ĥδ)

Ûres (t) = exp
(
−iĤres

0 t
)
,

(4.19)

δAm = µ1 − νm, δRm = µ2 − ωm are the detunings from axial and radial eigenfrequencies. The
anharmonic term will transform into:

Ĥres
a = −3εωA

N∑
m,n,p=1

[
Dmnp

(γmγnµp)
1/4

(
2âpb̂

†
mb̂ne

−iµ1t + âpb̂
†
mb̂

†
ne
i(2µ2−µ1)t

)
+ h.c.

]
. (4.20)

The resonance condition is given by:

2µ2 − µ1 = 0, 2 (ωx + δRcom) = (ωz + δAcom) . (4.21)

After choosing the appropriate phase and the global rotation, the total Hamiltonian of the
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trapped-ion system is given by:

Ĥres
tot =

∑
j

∆Ej
2

σ̂zj +
∑
j

Vj σ̂
x
j

+
∑
j

Ω1j

2
σ̂zj

N∑
m=1

ηjm
(
âm + â†m

)
−

N∑
m=1

δAmâ
†
mâm

+

N∑
j=1

Ω2j

2
σ̂zj

N∑
m=1

ζjm

(
b̂m + b̂†m

)
−

N∑
m=1

δRmb̂
†
mb̂m

− 3εωA

N∑
m,n,p=1

[
Dmnp

(γmγnµp)
1/4

âpb̂
†
mb̂

†
n + h.c.

]
, (4.22)

here we assume resonant condition 2µ1 = µ2 is satisfied and neglect off-resonant anharmonic
terms. Using individual addressing or using different isotopes this Hamiltonian will take a similar
format as Eq. (2.7) and with global laser drives we can map to Eq. (2.8).

Figure 5: Left: Experimental scheme for simulating anharmonic spin-phonon system with one-site and
2 drives. Ion 1 is 171Yb+ assigned as molecular site while ion 2,3 are 172Yb+ used to provide vibrational
modes. Right: Experimental scheme for simulating anharmonic spin-phonon system with three sites and
two drives. All three ions are 171Yb+ assigned as molecular site and used to provide vibrational modes.

4.5 Anharmonic Spin-phonon system with One Drive

The second type of trapped-ion setup for the anharmonic system discussed in section 2.2 involves
a single set of sideband drives coupling to radial direction. The experimental scheme is shown in
Figure 6. In the ordinary frame, the spin-phonon, and anharmonic coupling term will take the
same form as Eq. (3.36) and (3.37). To rotate into resonant frame we use the same procedure
as in Eq. (4.19). In this case since there is no spin-phonon coupling in axial direction, so δAm
is not defined. Instead, an arbitrary real number ∆m can be chosen for each axial mode and we
can define a pseudo effective frequency Λm = ∆m + νm accordingly:

Ĥδ =
∑
m

−(∆mâ
†
mâm + δmb̂

†
mb̂m). (4.23)

21



After choosing the appropriate phase and global rotation, the total Hamiltonian of the trapped-
ion system including pure spin operators becomes:

Ĥres
tot =

∑
j

∆Ej
2

σ̂zj +
∑
j

Vj σ̂
x
i −

N∑
m=1

(∆mâ
†
mâm + δmb̂

†
mb̂m)

+
∑
j

Ωj
2
σ̂zj

N∑
m=1

ζjm

(
b̂m + b̂†m

)
− 3εωA

N∑
m,n=1

[
Dmnp′

(γmγnµp′)
1/4

âp′ b̂
†
mb̂

†
n + h.c.

]
,

(4.24)

here we assume resonance condition 2µ− Λp = 0 is satisfied for a certain p = p′ and neglect the
fast rotating off-resonance terms. Eq. (4.24) again takes a similar format as Eqs. (2.7), (2.8)
when the appropriate drives are applied to the ions.

Figure 6: Experimental scheme for simulating anharmonic spin-phonon system with three sites and one
drive. All three ions are 171Yb+ assigned as molecular site and used to provide vibrational modes.

4.6 Summary

The correspondence between parameters of target models and their counter parts in trapped-
ion system are summarized in Table 1. By individual addressing or using different isotopes, we
control which ions are coupled to the laser (j index). We can also drive a specific mode (m index)
in phonon-related interactions by parking the effective frequency µ near the eigenfrequency of a
certain phonon mode. This becomes obvious in the ordinary frame. Spin-phonon interaction in
Eq. (3.36) is dominated by the term oscillating at minimum detuning δm,min. Interactions with
other modes can be neglected when δm,min is sufficiently small.

For the resonant frame, all modes seems to be at resonance in Eq. (4.7) but they are suppressed

by the additional harmonic term −
∑N
m=1 δmb̂

†
mb̂m so the time evolution will be the same as

the ordinary frame. The same reasoning could explain the different resonance conditions for
anharmonic coupling in the two frames. Consider the system in Eq. (4.22) and assume we
setup the trap appropriately such that there is a resonance coupling between axial tilt and ra-
dial rocking mode (see discussion in section 4.2). In resonant frame we can enforce resonance
for all combinations of mode index [m,n, p] by tuning effective frequencies to 2µ = ν. How-
ever, the effective coupling is still between modes m = n = 3, p = 2 under the suppression of
−
∑N
m=1 δAmâ

†
mâm −

∑N
m=1 δRmb̂

†
mb̂m.
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Target Model Trapped-ion System
Site Energy/Energy Difference ∆E Resonant Drive Rabi Frequency Ωres
Electronic-vibrational coupling g, λ sideband Drive Rabi Frequency Ωside
Harmonic Vibrational Energy ω sideband Detuning −δ

Anharmonic Vibrational Energy Θ Resonant Coupling Coefficient −3εωA
Dmnp

(γmγnµp)
1/4

Incoherent phonon dissipation rate Γ Effective sideband cooling rate |Tj′m|γ

Table 1: Correspondence between parameters of target models and their counter parts in trapped-ion
system

5 Methods

In this section we discuss the numerical methods used in this work. First we illustrate some
general approximations to be implemented in numerical simulations and review the equations
to be solved for computing time evolution. We then discuss other helpful techniques including
eigenenergy diagrams and various signatures of quantum delocalization.

A python module was built based on “Qutip”[41], “Numpy”, “Scipy”. It can be used to calculate
trapped ion parameters and construct numerical forms of interaction Hamiltonian in a systematic
way.

5.1 Approximations of Hamiltonian

We represent the spin part of the interaction Hamiltonian in a tensor product basis of multiple
spin 1/2 space and the phonon part in a fock basis {|n⟩}. Mathematically a phonon space has
infinite dimensions. However, a finite cutoff pc can be chosen when the phonon population is
sufficiently small such that the phonon occupation at large n is negligible. In practice we first
make a reasonable guess of pc based on phonon population of initial state and solve for time
evolution. Then we compute an error parameter defined as the maximum phonon population at
highest allowed phonon state:

Perr = ⟨|pc⟩ ⟨pc|⟩max. (5.1)

We readjust pc until Perr ≲ 10−10 so that this finite cutoff would correctly capture the dynamics
of the system. The Hamiltonian for a system of N spin 1/2 space and N ′ phonon space with
individual cutoff set to pc,m has size:

(2N ·
N ′∏
m=1

pc,m)2. (5.2)

For a typical 3-ion system the computational complexity is dominated by the number of phonon
spaces in the problem and their required cutoff. When initial phonon population is large, simu-
lating a complete set of phonon modes becomes impossible. In these cases we use smaller cutoff
for phonon spaces with smaller change of in population or only consider near-resonance modes as
discussed in section 4.6. The detailed approximation for each model will be discussed in section
6.
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5.2 Quantum Time Evolution

The time-evolution of an open quantum system under Born-Markov approximation can be com-
puted by solving the Lindbladian master equation[31][42]:

∂ρ̂

∂t
=

1

i

[
Ĥ, ρ̂

]
+ L̂ (ρ̂) , (5.3)

ρ̂ is the density matrix representation of quantum state and Ĥ is the Hamiltonian of the system.
Lindbladian super-operators L̂ describes the interaction between the system and an external
environment. Eq. (5.3) is solved numerically with “Qutip: mesolve” which evolves the density
matrix with 12-th order Adams–Bashforth method [43].

The time-evolution of a closed quantum system can be solved using the Schrödinger equation
[31]:

i
∂

∂t
|ψ⟩ = Ĥ|ψ⟩, (5.4)

|ψ⟩ is the ket representation of the quantum state and Ĥ is the Hamiltonian of the system. Eq.
(5.4) is solved numerically via complete-diagonalization when Ĥ is time-independent. Equation
involving a time-dependent Ĥ is solved by evolving the state vector in a similar way as for open
quantum system case using “Qutip: sesolve”.

5.3 Energy Diagram

The Eigenenrgy diagram is an intuitive approach to understand the properties of donor-acceptor
system in Eqs. (2.1),(2.5). Following the procedure in Ref. [30], we do a semi-classical approxi-
mation to phonon operators by replacing the phonon displacement operator with a real number
and neglecting the momentum operator:

̂̄X → xm
X0m

= x0m,
̂̄P 2

→ 0. (5.5)

For the mth mode, X0m =
√

1
2mωm

is defined as the scale factor and x0m is defined as the

normalized displacement coordinate. We apply this approximation to the trapped-ion simulator
Hamiltonian in Eq. (4.8):

Ĥsc = E1σ̂
z
1+E2σ̂

z
2+J12

(
σ̂+
1 σ̂

−
2 + h.c.

)
+

2∑
i=1

3∑
m=1

√
2Ωiηim
2

σ̂zi x0m −
3∑

m=1

δm
2

(
x20m − Î

)
. (5.6)

The above equation can be further simplified by mapping it to an equivalent one-site system
following Eqs (2.5) and (2.6):

Ĥ ′
sc = J12σ̂x + (E1 − E2)σ̂z +

3∑
m=1

√
2

2
(Ω1η1m − Ω2η2m)x0mσ̂z −

3∑
m=1

δm
2

(
x20m − Î

)
= J12σ̂x +

[
∆E

2
+

3∑
m=1

gm
2
x0m

]
σ̂z −

3∑
m=1

δm
2

(
x20m − Î

)
,

(5.7)

where we define
gm ≡

√
2(Ω1η1m − Ω2η2m), ∆E = 2(E1 − E2). (5.8)
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For a specific mode m = m′ we can plot two eigenergies of the system as a function of xm′ while
setting the displacements of the other 2 modes to 0. For a given xm′ , these eigenenergies are just
the eigenvalues of a Hermitian operator:

Ĥ ′
sc = J12σ̂x +

[
∆E

2
+
gm′

2
x0m′

]
σ̂z −

δm′

2

(
x20m′ − Î

)
. (5.9)

First consider the unperturbed case when J12 = 0, the eigenstates of the system is simply given
by |↑⟩ |↓⟩ (or equivalently: |↑↓⟩ , |↓↑⟩ for the two site system) and corresponding eigenenergies
(note we always set δm < 0 as discussed in section 4):

E = ±(∆E/2 + gm′/2x0m′)− δm′

2
x2m′0 +

δm′

2

=
|δm′ |
2

(
x0m′ ± gm′

2 |δm′ |

)2

+
1

2

(
±∆E + δm′ − gm′2

2 |δm′ |

)
.

(5.10)

which are quadratic functions with minimums located at ± η′
m′

|δm′ | . The energy difference between

the two minimums is just ∆E. The general case can be solved numerically or analytically :

E = ±
√

(∆E

2
+
gm′

2
x0m′)2 + J2

12 −
δm′

2
x20m′ +

δm′

2
. (5.11)

With xm′ → ±∞, the effect of J12 becomes negligible so the eigenstates can be approximated as
the unperturbed states. Hence we label the two curves in terms of unperturbed states according
to their configuration in this limiting regime. The difference from unperturbed case only becomes
significant near the intersection of two curves. With a non-zero J12, the intersecting point turns
into a avoided crossing as σ̂x mixes the unperturbed eigenstates [31]. This mixing is essential for
EET to take place as it couples the two eigenenergy curves.

After computing the eigenenergy curves, the harmonic energy levels of mode m′ spaced by |δm′ |
can then be plotted on the energy diagram. Note the ground state energy level is located at
E = Emin instead of E = Emin + |δm′ |/2 because we have neglected the constant δm/2 when
writing the Hamiltonian.

5.4 Signatures of Quantum Chaos and Delocalization

Unlike classical chaos which has common features in terms of Lyapunov exponents [44], criterias
and signatures of quantum chaos tends to vary for different types of systems. The first type
of signature we will be using is based on the energy level clustering of a time-independent
Hamiltonian [45]. For a integrable system, spacings of neighboring eigenenergy levels will follow
a exponential distribution:

P (S) = exp(−S). (5.12)

which is often referred as Poissonian because the levels in this case has an analogy to random
events in a Poissonian random process. For chaotic systems, the spacings follow more complicated
Wiegner-Dyson distributions dervied from random matrix theory. The properties of level spacing
distribution can be characterized by an energy level statistic r defined as [46]:

⟨r⟩ = 1

n

∑
n

min (En+1 − En, En − En−1)

max (En+1 − En, En − En−1)
. (5.13)

In general, ⟨r⟩ → 0.39 for a Poissonian system and ⟨r⟩ → 0.53 for a Wiegner-Dyson type system.
The level clustering technique is independent of initial state but it only applies for systems with
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a time-independent Hamiltonian. The other three type of signatures involve tracking the time
evolution of some observablse. By definition of quantum delocalizaiton, the system will lose its
memory of initial state in time evolution. Quantitatively we can define a dilution factor as the
long-time average of survival probability [25]:

σ =
〈
|⟨ψ (0)|ψ (t)⟩|2

〉
t→∞

. (5.14)

Here ⟨⟩means the time average of variable inside. In this case σ → 0 means the system completely
loses its memory of initial state. However, the dilution factor is not experimentally favorable
because we are not capable of measuring spin and phonon state population simultaneously and
in numerical simulations we find it is not very useful in measuring delocalization in spin space.

For delocalization in spin space, it is convenient to study the evolution of spin imbalance observ-
able L̂ [46]. Consider a tensor product space of N spin-1/2 states with M of them initialized as
|↑⟩ with index j and N −M of them initialized as |↓⟩ with index j′ :

L̂ (t) =

∑M
j=1⟨σ̂zj (t)⟩
N

−
∑N−M
j′=1 ⟨σ̂zj′(t)⟩
N −M

. (5.15)

As the spin space is initialized with L̂ (0) = 2, L(t) would remain nearly unchanged for a
localized case or evolve to L̂ (t) = 0 when the state becomes completely thermalized as a result
of delocalization.

In comparison to classical cases, chaotic quantum systems are not sensitive to slightly different
initial conditions because the overlap between two distinct states will be preserved by the unitary
evolution operator. However, two identical initial states evolving under two slightly different
Hamiltonians will result in diverging trajectories if the quantum system is chaotic ([45], [47]).
Suppose the same initial states |ψ0⟩ are prepared for two systems with very similar Hamiltonians
Ĥ1, Ĥ2 with corresponding unitary evolution operator Û1, Û2, such features can be shown by
computing:

∆Pψ(t) = | ⟨ψ1(t)| |ψ2(t)⟩ |2,
∆Aψ(t) = ⟨ψ1(t)|Â|ψ1(t)⟩ − ⟨ψ2(t)|Â|ψ2(t)⟩.

(5.16)

where |ψi(t)⟩ = Ûi(t) |ψ0⟩, and Â is some observable we can choose.

Due to the lack of a common criteria and signatures for chaotic quantum systems, we will be
using a combination of the above signatures to probe the existence of delocalization.

6 Results and Discussion

In this section we present the results for multiple trapped-ion setups based on the models dis-
cussed in section 2. For each setup we first simplify the Hamiltonian following the procedure
described in section 5.1. These approximated forms will be used in numerical simulations.

6.1 Donor-Acceptor Pair: Trapped-ion Simulation

6.1.1 Hamiltonian under Approximation

As discussed in section 4.2, we numerically simulate Eq. (4.8) following a similar setup as in [30].
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It is convenient to define an effective coupling coefficient to illustrate the magnitude of s-p (spin-
phonon) coupling:

Ωeff = ΩX0∆k, (6.1)

where X0 ≡
√

1/2Mωx is the harmonic oscillator length for radial COM mode. With this
definition, we can rewrite s-p coupling between ion i and mode m as:

Ωζjm = Ωeff
X0m

X0
Tjm ∼ Ωeff , (6.2)

where Tjm, X0m follow the same definition as in (3.22). For simplicity, we set Ωj to be the same
value for both ion 1 and ion 2. In this case, using Eq. (2.6), the COM mode will not contribute
to the evolution since λ11 − λ21 = 0. We therefore exclude this mode from calculation.

The Hamiltonian used for simulation can be simplified to:

Ĥ =

2∑
j=1

Ej σ̂
j
z+J12

(
σ̂+
1 σ̂

−
2 + h.c.

)
+

2∑
j=1

Ωeff

2
σ̂zj

∑
m=2,3

X0m

X0
Tjm

(
b̂m + b̂†m

)
−

∑
m=2,3

δmb̂
†
mb̂m, (6.3)

and the Lindbladian can be written as:

L̂ (ρ̂) =
∑
m=2,3

|T3,m|γm (1 + n̄m)

(
b̂mρ̂b̂

†
m − 1

2

[
b̂†mb̂m, ρ̂

])
+ |T3,m|γmn̄m

(
b̂†mρ̂b̂m − 1

2

[
b̂mb̂

†
m, ρ̂

])
.

(6.4)
We choose the initial state as:

|ψ0⟩ = |↑↓⟩ ⊗ |n̄ = 0.01⟩ ⊗ |n̄ = 0.01⟩ , (6.5)

where the ion 1 is in up state, ion 2 is in down state, and the system is cooled to a near ground
thermal state with average phonon number n̄ = 0.01 for both tilt and rocking phonon modes (see
Appendix C). We use fx = 2MHz, fz = 1MHz for trap setup. The eigenfrequencies of the system
are shown in Figure 7. For all plots we use J12 and define normalized time as t0 = tJ12/2π.

Figure 7: Radial eigenfrequencies of 3-ion system with fx = 2MHz, fz = 1MHz. From left to right are
effective laser frequency µ (red dashed), rocking, tilt, COM mode frequencies, respectively.
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6.1.2 Numerical results

We explore the conditions of resonant transfer in the near incoherent intermediate regime (J12 ≲
γ). From the result in Ref. [30], we expect a similar mechanism: the transfer rate from ion 1 to
ion 2 will be maximized when there is an overlap between harmonic energy levels. In the regime
J12 ≪ δr, the difference between ground state energy level for the two eigenenergies curves is
approximately ∆E as derived in section 5. Hence, the resonance condition is given by:

∆E = nδr +mδt n,m ∈ N+. (6.6)

Here we again use the notation δr, δt for rock mode and tilt mode detuning. With parameters in
table 2 fixed, we simulate evolution of the spin population by at different site-energy difference
∆E.

Parameters Values in [kHz]
Site-site coupling J12 2π × 1

Effective s-p coupling Ωeff 2π × 50
Detuning from ωrock δr −2π × 100

Dissipation rate γ 2π × 10

Table 2: Approximate parameter values used for simulating two-site Donor-Acceptor system

The spin/phonon evolution of a typical transfer is shown in Figure 8. The probability of observing
the spin state |↑↓⟩ is defined as:

P↑↓ = Tr(ρ̂(t) |↑↓⟩ ⟨↑↓|) (6.7)

Figure 8 shows that P↑↓ can be fitted by a exponential decay in form A exp(−kt) + B after
neglecting the first few data points (t0 < 0.1 in this case, for instance) and we extract k as the
decay rate with normalized unit t−1

0 .

(a) (b)

Figure 8: Dynamics of Donor-acceptor system at resonant transfer condition (∆E = 2π×100 kHz) with
dissipation applied only on rocking mode and phonon cutoff [5, 10] for [tilt,rock] modes. a) evolution
of spin population with initial state |↑↓⟩ occupation in blue and transferred state |↓↑⟩ in orange. b)
evolution of phonon populations of tilt and rocking mode.

Three typical types of resonance are shown in Figure 9 ([n = 1,m = 0]), Figure 10([n = 1,m =
0]), Figure 11 ([n = 1,m = 1]), with energy diagram computed according to section 5.
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(a) (b)

Figure 9: Resonance caused by the overlap between rocking mode energy levels. (a) Transfer rates k near
the first resonance (∆E/2π = |δrock|/2π = 567.1 kHz) as a function of energy splitting ∆E, with sample
points spacing of 0.5 kHz. The maximum transfer rate takes place at ∆E/2π = 100 kHz. (b) Energy
diagram of the system at ∆E/2π = 100 kHz Eigenenergy curves for the unperturbed eigenstates |↑↓⟩
(orange), |↓↑⟩ (blue) are plotted with corresponding rcok mode harmonic energy levels. Energy spacing
between two ground states is calculated to be 100.01 kHz theoretically. The simulation is done with
dissipation applied only on rocking mode and phonon cutoff [5, 10] for [tilt,rock] modes and Perr ≲ 10−8.

(a) (b)

Figure 10: Resonance caused by the overlap between tilt mode energy levels. (a) Transfer rates k near
the first resonance (∆E = 1 × |δtilt| = 567.1 kHz) as a function of energy splitting ∆E, with sample
points spacing of 0.5 kHz. The maximum transfer rate takes place at∆E/2π = 567 kHz. (b) Energy
diagram of the system at ∆E/2π = 567 kHz Eigenenergy curves for the unperturbed eigenstates |↑↓⟩
(orange) , |↓↑⟩ (blue) are plotted with corresponding tilt mode harmonic energy levels. Energy spacing
between two ground states is calculated to be 567.00 kHz theoretically. The simulation is done with
dissipation applied only on rocking mode and phonon cutoff [5, 10] for [tilt,rock] modes and Perr ≲ 10−8.
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(a) (b)

Figure 11: Resonance caused by the overlap between combinations of tilt and rocking mode energy
levels. (a) Transfer rates k near the first resonance (∆E = 1× |δtilt + δrock| = 667.1 kHz) as a function
of energy splitting ∆E, with sample points spacing of 0.5 kHz. The maximum transfer rate takes place
at∆E/2π = 667 kHz. (b) Energy diagram of the system at ∆E/2π = 667 kHz Eigenenergy curves
for the unperturbed eigenstates |↑↓⟩ (orange) , |↓↑⟩ (blue) are plotted with corresponding tilt+rocking
mode harmonic energy levels. Energy spacing between two ground states is calculated to be 667.00 kHz
theoretically. The simulation is done with dissipation applied on both tilt, rocking mode and phonon
cutoff [5, 10] for [tilt,rock] modes and Perr ≲ 10−8.

Figure 12: Transfer rate k in log scale as a function of energy splitting ∆E for type 1 resonance sample
points spacing of 1 kHz near resonance point ∆E/2π = n|δm| and 10 kHz in off-resonance regime to track
the general shape. The simulation is done with dissipation applied only on rocking mode and phonon
cutoff [5, 15] for [tilt,rock] modes and Perr ≲ 10−10.

We also test the dependence of resonant transfer rate on γ. Although the normalization of
transfer rate is problematic, the general trend is consistent with Ref. [30] (see Appendix D).

6.1.3 Discussion

The simulation results obtained are in agreement with those of a one-site system comprising a
single set of phonon modes studied in Ref. [30]. Theoretically the resonance condition in Eq.
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(6.2) is consistent with the prediction of Forster resonant transfer model [11]:

k = 2π|V |2
∑
ν,ν′

pν′FCν,ν′δ(ED,ν − EA,ν′), (6.8)

ED,ν , EA,ν′ are the eigenenergy of donor phonon eigenstate |↑↓⟩ ⊗ |ν⟩ and acceptor phonon
eigenstate |↓↑⟩ ⊗ |ν′⟩ for harmonic energy level index ν, ν′, pν describe the initial thermally
distributed phonon populations, FCν,ν′ is the Franck-Condon factor between harmonic energy
level index ν, ν′. The actual transfer rate is determined by FCν,ν′ and dissipation rate γ. The
latter also causes the broadening of the peaks. In the regime where V ≫ J12, such effects will be
more significant, resulting in a nearly continuous “spectrum” of k(∆E). This will be a interesting
regime for further research. It may be feasible to tune the parameters carefully and establish
a nearly linear relation between k and ∆E. Overall, this consistency with the Forster resonant
transfer model serves as a benchmark for both the numerical methods and computational modules
we have employed so far in our study.

Furthermore, our system is more realistic due to its coupling to multiple sets of intermolecular
modes, which provides a richer set of resonant conditions. This will make the experimental
realization of continuous transfer rate spectrum easier.

Our system is also capable of simulating intramolecular vibrations. Instead of being coupled
to the same set of phonon modes, each site will have vibrational motions independent of the
other sites. Using individual addressing, we will be capable of coupling the donor and acceptor
sites to two independent but identical sets of radial motional modes. We can further expand
our capability of AQS based on this prototype simulator by scaling up the number of ions and
simulate more complicated EET models such as the one in Ref. [18].

6.2 Anharmonicity Induced Delocalization

In this subsection we present numerical results for anharmonicity induced delocalization in three
different setups of simulators as discussed in section 4. First we want to validate that the allowed
parameter space is capable of generating delocalization. Based on that, we further examine if the
simultaneous presence of spin phonon coupling and anharmonic coupling interactions in these
systems can cause the transition to chaotic regime. We start by specifying the parameters to be
used for simulation, we illustrate a general procedure for probing quantum chaos and then we
discuss the results in detail.

6.2.1 Parameter Space and Simulation Procedure

The trap radial confining frequency is set to fx = 3.1MHz, while axial confining frequency
is determined by desired the anharmonic detuning δah using (4.15). We apply a similar set of
parameters as in Ref. [25]. The definition of these parameters and their values are listed in Table
3. We choose rocking mode detuning as energy scale: δ0 = |δr|. Again we define normalized time
as:

t0 = tδ0/2π (6.9)
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Parameters Values in [kHz]
Energy Scale: δ0 2π × 80

Site-energy Splitting: ∆E 2δ0
Site-energy coupling: Ωx 0.3δ0
Effective s-p coupling: Ωeff ≲ 0.5δ0

Resonant anharmonic coupling: Cah ≲ 0.05δ0
Detuning from Radial rocking: ωr δr −δ0

Detuning from Axial tilt: νt δt −2δ0

Table 3: Definition and values of parameters used for simulating anharmonic induced delocalization.

For all three setups, the existence of delocalization and the contribution from different terms are
tested according to the following general procedure.

• We first test the effects of spin-phonon coupling strength on the system’s behavior by vary-
ing Ωeff from 0.1δ0 to δ0 with all other parameters fixed and anharmonicity at resonance.
As an initial probe, for each value we compute the energy level statistic ⟨r⟩ using Eq. (5.13)
in the resonant frame.

• We simulate the time evolution by numerically solving Eq. (5.4) in ordinary frame for state
ψ(t) and compute the value of a spin observable ⟨A(t)⟩.

• Then we slightly vary the parameters in H by increasing Ωeff with 1% and solve for state
|ψ′(t)⟩ and observable ⟨A′(t)⟩. Following the procedure in section 5, we investigate the
time evolution of ∆Pψ(t) and ∆Lψ(t) as defined in Eq. (5.16) for chaotic signatures

The effects of anharmonic coupling can be tested in the same way. In this case we fix the ratio
between all other parameters and decrease the effect of anharmonic term by increasing δah to
detune away from resonant anharmonicity. Note δah is implicitly tuned via trap frequency, whose
changes will also modulate the value of Cah. Therefore, we need to change δ0 accordingly to
make sure δah/δ0 ∼ 0.05 is still valid. Values of δ0 for a given δah are listed in Table 4.

Energy Scale: δ0[kHz] Anharmonic detuning: δah[δ0]
2π × 80 0
2π × 83 −1
2π × 95 −5

Table 4: Energy scale and anharmonic detuning to be used for testing the effect of anharmonic coupling.

6.2.2 Two-drive configuration: Hamiltonian under Approximation

Following sections 4.3 and 4.4, we create Fermi-resonant coupling between axial tilt and radial
rocking mode by tuning the trap frequency and setting the effective laser frequency µ1, µ2 such
that resonant condition 2ωr = ωt and 2µ2 = µ1 are satisfied simultaneously, or in terms of
detuning:

2ωr = ωt, 2δr = δt. (6.10)

To probe the existence of chaotic behavior, it is necessary to start from a relatively highly
excited phonon state and we have to use a large cutoff for the phonon-space. To make the
computational complexity approachable for our numerical method, we use small detunings from
axial tilt (phonon operator ât) and radial rocking (phonon operator b̂r) mode. This way we can
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neglect the far-detuned motional modes that are also far from the anharmonic resonance. The
Hamiltonian in Eq. (4.22) can be approximated as:

Ĥres =
∆E

2

∑
j

σ(j)
z + V

∑
j

σ(j)
x

+
1

2

∑
j

Ωeff,r
Xr0

X0
Tjrσ

(j)
z (b̂r + b̂†r) +

1

2

∑
j

Ωeff,t
Xt0

X0
Tjtσ

(j)
z (ât + â†t)

−δr b̂†r b̂r − δtâ
†
t ât ++Cahâ

†
t b̂r b̂r + Cahâtb̂

†
r b̂

†
r. (6.11)

To test the effect of anharmonic coupling, the trap frequency is detuned away from resonance.
It is convenient to simulate in the ordinary frame, as discussed in section 4.6. The approximated
Hamiltonian can be derived from Eqs. (3.37) and (4.18) as:

Ĥord =
∆E

2

∑
j

σ̂jz + Vt
∑
j

σ̂jx

+
∑
j

Ωeff,t
Xt0

X0
σ̂jzTtr cos (µ1t)

(
âte

−iωtt + â†te
iωtt

)
+
∑
j

Ωeff,r
Xr0

X0
σ̂jzTjr cos (µ2t)

(
b̂re

−iωrt + b̂†re
iωrt

)
+Cah

[(
2âtb̂

†
r b̂re

−iωtt + âtb̂
†
r b̂

†
re
iδaht

)
+ h.c.

]
, (6.12)

where δah = 2ωr − ωt is the effective anharmonic detuning.

6.2.3 Two-drive configuration with one site: Numerical Results

By only allowing ion index j = 1 for the two drives configuration, a 1-site system that has a
similar structure as Eq. (2.7) can be obtained.

We follow the procedure in section 6.2.1 with initial state |ψ0⟩ = |↓⟩ ⊗ |n = 5⟩ ⊗ |n = 5⟩. Since
there there is only 1 spin space, ⟨L⟩ is not defined. Hence, we only use time evolution under
slightly different Ĥ as a signature and choose Â = σ̂z for ∆Aψ(t). The results of the level
statistics ⟨r⟩ and the spin observables for Ωeff are shown in Figure 13 and 14 and the results for
anharmonic coupling are shown in Figure 15.
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Figure 13: Energy level statistic ⟨r⟩ as a function of effective Rabi frequency Ωeff/δ0 (blue). The dashed
lines are the criterion for integrable/chaotic systems ⟨r⟩ = 0.39, ⟨r⟩ = 0.53, respectively. ⟨r⟩ continues
to increase in the plotted regime. Further increasing Ω requires a larger phonon cutoff since phonon
excitation also increases.

(a) (b)

Figure 14: Chaotic signatures due to spin-phonon coupling probed using slightly different Hamiltonian
for a two-drive, one-site system initialized as |↓⟩. Anharmonic term is set to resonance and Ωeff = 0.5δ0
(blue), Ωeff = 0.2δ0 (orange). (a) Evolution of difference in spin imbalance observable, ∆Lψ(t) (b)
Evolution of the overlap between two identical initial states, ∆Pψ(t). With Ωeff = 0.5δ0, the difference
between observable values increases fast and saturates at a relatively large value ∼ 0.1 in comparison to
Ωeff = 0.2δ0 case, indicating a more chaotic behavior for large Ωeff . The overlap between two identical
initial states shows a result with similar interpretations. The simulation is done with phonon cutoff
[60, 60] for [tilt,rock] modes and Perr ≲ 10−40.
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(a) (b)

Figure 15: Chaotic signatures probed using slightly different Hamiltonian for a two-drive, one-site
system initialized as |↓⟩, with Ωeff fixed at 0.4δ0 and δah = 0 (orange), δah = −5δ0 (blue) (a) Evolution
of difference in spin observable ∆σz,ψ(t) (b) Evolution of the overlap between two identical initial states,
∆Pψ(t). With resonant anharmonicity, the difference between observable values increases after time and
saturates at a small finite value ∼ 0.25. With near zero effective anharmonic coupling (large δah), the
difference between these observables increases very fast to about 1 but then bounces back to ∼ 0.5,
again showing a quasi-periodic behavior. The overlap between two identical initial states shows a result
with similar interpretations. The simulation is done with phonon cutoff [50, 50] for [tilt,rock] modes and
Perr ≲ 10−20.

6.2.4 Two-drive configuration with multiple Sites: Numerical Results

By allowing ion index j = 1, 2, 3 for one-drive configuration, a three-site system that has a similar
structure as Eq. (2.8) can be obtained. We follow the procedure in section 6.2.1 with initial state
|ψ0⟩ = |↓↑↓⟩ ⊗ |n = 5⟩ ⊗ |n = 5⟩. We choose Â = L̂ for ⟨Â⟩. The results for Ωeff are shown in
Figure 16, 17a, 18 and the results for anharmonic coupling are shown in Figure 17b, 19.

Figure 16: Energy level statistic ⟨r⟩ as a function of effective Rabi frequency Ωeff/δ0 (blue). The dashed
lines are the criterion for integrable/chaotic systems ⟨r⟩ = 0.39, ⟨r⟩ = 0.53, respectively. ⟨r⟩ saturates at
∼ 0.53 at Ω ∼ 0.6δ0 indicating a chaotic behavior.
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(a) (b)

Figure 17: Time evolution of spin imbalance observable. ⟨L(t)⟩ for a two-drive, three-site system initial-
ized as |↓↑↓⟩ (a) ⟨L(t)⟩ with spin-phonon coupling Ωeff = 0.1δ0, 0.2δ0, 0.3δ0, 0.4δ0, 0.5δ0 and resonance
anharmonic coupling. With Ωeff increasing, ⟨L(t)⟩ approaches 0 in the long term, indicating a clear tran-
sition from integrable to chaotic behavior. (b) ⟨L(t)⟩ with anharmonic detuning δah = 0,−1δ0,−5δ0
and Ωeff = 0.4δ0. As effective anharmonic coupling strength decreases, ⟨L(t)⟩ deviates from 0 but also
shows a feature quasi-periodic feature with increasing amplitudes of oscillation. The simulation is done
with phonon cutoff [20, 40] for [tilt,rock] modes and Perr ≲ 10−11.

(a) (b)

Figure 18: Chaotic signatures due to spin-phonon coupling probed using slightly different Hamiltonian
for a two-drive, three-site system initialized as |↓⟩. Anharmonic term is set to resonance and Ωeff = 0.5δ0
(blue), Ωeff = 0.1δ0 (orange). (a) Evolution of difference in spin imbalance observable, ∆Lψ(t) (b)
Evolution of the overlap between two identical initial states, ∆Pψ(t) with Hamiltonians with Ωeff
differing by 1%. With Ωeff = 0.5δ0, the difference between observable values increases fast and saturates
at a relatively large value ∼ 0.25 in comparison to Ωeff = 0.1δ0 case, indicating a more chaotic behavior
for large Ωeff . The overlap between two identical initial states shows a result with similar interpretations.
The simulation is done with phonon cutoff [20, 40] for [tilt,rock] modes and Perr ≲ 10−11.
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(a) (b)

Figure 19: Chaotic signatures probed using slightly different Hamiltonian for a two-drive, three-site sys-
tem initialized as |↓↑↓⟩, with Ωeff fixed at 0.4δ0 and δah = 0 (orange), δah = −5δ0 (blue) (a) Evolution of
difference in spin imbalance observable ∆Lψ(t) (b) Evolution of the overlap between two identical initial
states, ∆Pψ(t) with Hamiltonians with Ωeff differing by 1%. With resonant anharmonicity, the differ-
ence between observable values increases after time and saturates at a small finite value ∼ 0.25. With
near zero effective anharmonic coupling (large δah), the difference between these observables increases
very fast to about 1 but then bounces back to ∼ 0.5, again showing a quasi-periodic behavior. The
overlap between two identical initial states shows a result with similar interpretations. The simulation
is done with phonon cutoff [20, 40] for [tilt,rock] modes and Perr ≲ 10−11.

6.2.5 One-drive configuration: Hamiltonian under Approximation

In this section we will explore the delocalization phenomenology with only one drive, following
the discussion in sections 4.3 and 4.5. This configuration has a Hamiltonian of similar structure
as the two-drive configuration and it is more experimentally favorable since it only requires
applying sideband drives in radial direction, which is within the capability of our current lab
setup. First let us consider the case where anharmonic term is on resonance. Applying a similar
approximation as for two-drive configuration to Eq. (4.24), the Hamiltonian in resonant frame
can be approximated as:

Ĥres =
∆E

2

∑
j

σ(j)
z + V

∑
j

σ(j)
x +

1

2

∑
j

Ωeff,r
Xr0

X0
Tjrσ

(j)
z (b̂r + b̂†r)

−δb̂†r b̂r − 2δâ†t ât + Cahâ
†
t b̂r b̂r + Cahâtb̂

†
r b̂

†
r. (6.13)

Again we consider deviating from resonant anharmonicity in ordinary frame. In this case, it is still
possible to have an equivalent time-independent Hamiltonian in resonant frame without changing
the detuning δ. To keep eiδahtas the slowest process, we further require δah < 0 while δ,∆ < 0
for the resonant frame Hamiltonian to be physically meaningful. Rewrite δ = −δ0, ∆ = −∆0

where δ0,∆0 > 0, the constraints for ∆0 is given by:

2µ = Λt,→ 2 (ωr + δr) = νt +∆t,

δah = 2ωr − νt < 0. (6.14)

which simplifies to
∆0 > 2δ0. (6.15)

We are free to adjust the parameter ∆ introduced in Eq. (4.23) as it is purely mathematical so
the above condition can always be satisfied.
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Under these conditions, the time-independent Hamiltonian in resonant frame becomes:

Ĥres =
∆E

2

∑
j

σ(j)
z + V

∑
j

σ(j)
x +

1

2

∑
j

Ωeff,r
Xr0

X0
Tjrσ

(j)
z (b̂r + b̂†r)

+δ0b̂
†
r b̂r +∆0â

†
t ât + Cahâ

†
t b̂r b̂r + Cahâtb̂

†
r b̂

†
r. (6.16)

With an equivalent Hamiltonian in ordinary frame:

Ĥord =
∑
j

Ωeff,r
Xr0

X0
σ̂jzTjr cos (µr)

(
b̂re

−iωrt + b̂†re
iωrt

)
+Cah

[(
2âtb̂

†
r b̂re

−iνtt + âtb̂
†
r b̂

†
re
i(2δ0−∆0)t

)
+ h.c.

]
. (6.17)

here we write δah in terms of detuning:

δah = 2δ0 −∆0. (6.18)

In simulation we first choose δah and fx. The axial trap frequency fz can be determined by Eq.
(4.15) and corresponding ∆ determined by (6.18).

6.2.6 One-drive system: Numerical Results

By allowing ion index j = 1, 2, 3 for one-drives configuration, a three-site system that has a
similar structure as Eq. (2.8) can be obtained.

We follow the procedure in section 6.2.1 with initial state |ψ0⟩ = |↓↑↓⟩ ⊗ |n = 5⟩ ⊗ |n = 5⟩. We
choose Â = L̂ for ⟨Â⟩. The results for Ωeff are shown in Figure 16, 17a, 18 and the results for
anharmonic coupling are shown in Figure 17b, 19.

(a) (b)

Figure 20: Plot of energy level statistic ⟨r⟩. The dashed lines are the criterion for integrable/chaotic
systems ⟨r⟩ = 0.39, ⟨r⟩ = 0.53, respectively. (a) ⟨r⟩ as a function of effective Rabi frequency Ωeff/δ0
(blue). ⟨r⟩ saturates at ∼ 0.46 at Ω ∼ 0.6δ0. (b) ⟨r⟩ as a function of anharmonic detuning |δah|/δ0
(blue). ⟨r⟩ drops back to 0.39 with a decrease in effective anharmonic coupling.
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(a) (b)

Figure 21: Spin imbalance observable ⟨L(t)⟩ for a one-drive, three-site system initialized as |↓↑↓⟩ (a)
⟨L(t)⟩ with spin-phonon coupling Ωeff = 0.1δ0, 0.2δ0, 0.3δ0, 0.4δ0, 0.5δ0 and resonance anharmonic cou-
pling. With Ωeff increasing, ⟨L(t)⟩ approaches 0 in the long term, indicating a clear transition from inte-
grable to chaotic behavior. (b) ⟨L(t)⟩ with anharmonic detuning δah = 0,−1δ0,−5δ0 and Ωeff = 0.4δ0.
As effective anharmonic coupling strength decreases, ⟨L(t)⟩ deviates from 0 but also shows a feature
quasi-periodic feature with increasing amplitudes of oscillation. The simulation is done with phonon
cutoff [20, 40] for [tilt,rock] modes and Perr ≲ 10−11.

(a) (b)

Figure 22: Chaotic signatures due to spin-phonon coupling probed using slightly different Hamiltonian
for a one-drive, three-site system initialized as |↓↑↓⟩. Anharmonic term is set to resonance and Ωeff =
0.5δ0 (blue), Ωeff = 0.1δ0 (orange). (a) Evolution of difference in spin imbalance observable, ∆Lψ(t).
With Ωeff = 0.5δ0, the difference between observable values increases fast and saturates at a relatively
large value ∼ 0.25 in comparison to Ωeff = 0.1δ0 case, indicating a more chaotic behavior for large
Ωeff . (b) Evolution of the overlap between two identical initial states, ∆Pψ(t) with Hamiltonians with
Ωeff differing by 1%. The overlap between two identical initial states shows a result with similar
interpretations. The simulation is done with phonon cutoff [20, 40] for [tilt,rock] modes and Perr ≲ 10−11.
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(a) (b)

Figure 23: Chaotic signatures probed using two slightly different Hamiltonians for a one-drive, three-
site system initialized as |↓↑↓⟩, with Ωeff fixed at 0.4δ0 and δah = 0 (orange), δah = −5δ0 (blue) (a)
Evolution of difference in spin imbalance observable ∆Lψ(t). With resonant anharmonicity (δah = 0),
the difference between observable values increases after time and saturates at a small finite value ∼ 0.25.
(b) Evolution of the overlap between two identical initial states, ∆Pψ(t) with Hamiltonians with Ωeff
differing by 1%. With near zero effective anharmonic coupling (large δah), the difference between these
observables increases very fast to about 1 but then bounces back to ∼ 0.5, again showing a quasi-periodic
behavior. The overlap between two identical initial states shows a result with similar interpretations.
The simulation is done with phonon cutoff [20, 40] for [tilt,rock] modes and Perr ≲ 10−11.

6.2.7 Discussion

The results of all configurations above share very similar properties and similar interpretations.
In terms of spin-phonon coupling, as Ωeff increases from 0.1 to 0.5δah, level statistic ⟨r⟩ increases
in an overall monotonous trend, deviating from the regime for integrable system (⟨r⟩ ∼ 0.39).
In Figure 13a,16,20a the spin imbalance ⟨L⟩ stays around its initial value of 2 for small Ωeff but
decays fast and stabilizes at a value close to 0 in the long term for large Ωeff (see Figure 17a, 21a).
When identical states are evolved under two sightly different Hamlitonians, difference between
the spin observable ∆Aψ(t) stays around 0 for small Ωeff but deviates quickly to a larger value
for large Ωeff (see Figure 14a, 18a, 22a).

The evolution of ∆Pψ(t) shows a consistent trend as it stays close to 1 for small Ωeff but decays to
0 for large Ωeff as shown in Figure 14b, 18b, 22b. Similar chaotic features are also demonstrated
in [47]. Following the discussion in section 5, the three types signatures consistently indicates a
significant evidence that the transition from normal to chaotic delocalization behavior in these
systems is caused by strong spin-phonon coupling interactions.

The effect of the anharmonic phonon coupling is more complicated. Energy level statistics for
one-drive configuration shows a clear monotonous decreasing trend as δah increases. At δah = 5δ0
the anharmonic term is far off-resonance such that the effective coupling is negligible. With
⟨r⟩ ∼ 0.39 under this condition we expect the system to be integrable (see Figure 20). However,
the behaviors probed using spin imbalance and slightly different Hamiltonians differ significantly
from the case of small Ω. For instance, ∆Lψ(t) quickly increases to a large value about 1 as
compared to the resonant coupling case with a maximum deviation of ∆Lψ(t) ∼ 0.25 (see Figure
22a and 23a). However ∆Lψ(t) displays a quasi-periodic behavior that is also identified in the
evolution of spin-imbalance observable (Figure 21b) and overlap (Figure 23b). Therefore, the
contribution of anharmonic coupling to delocalization remain not clear. However it is likely
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that anharmonicity affects the potential chaotic behavior in a different way than spin-phonon
coupling. For further investigations, we will initialize the system with many similar initial states
and average out their dynamics to see if the quasi-period structures can be erased. If such
structures still exist, we can perform time series statistics such as Fourier or wavelet analysis
to study their properties and origins. Otherwise, we might just arrive at the conclusion that
anharmonicity does not have considerable contributions to delocalization in these systems. This
seems to contradict the result of Ref. [25], where anharmonicity is a determining factor for
delocalization. However, the model in Ref. [25] includes anharmonic coupling between multiple
sets of modes and has a more complicated phonon Hamiltonian that is currently beyond the
capability of our simulator. We are looking for innovative ways to solve this problem, such as
introducing time-dependent trap confining frequencies.

Another crucial observation to make is that there exist inconsistencies between the chaotic sig-
natures predicted by energy level statistics and those obtained using other methods. Besides
the possibility of predicting the effects of anharmonicity as we just mentioned above, a larger
⟨r⟩ does not necessarily mean one quantum system has more chaotic behaviors than the other.
For example, a two-drive three-site system with ⟨r⟩ ∼ 0.51 is not very different from a one-drive
three-site system with ⟨r⟩ ∼ 0.45 in terms of other signatures. Further investigations are also
required to elucidate the underlying reasons for these discrepancies.

7 Conclusion

In conclusion, this thesis has presented a comprehensive exploration of the mapping between
photosynthesis-based spin-phonon models and a trapped-ion simulator. Based on the spin-only,
spin-phonon, and harmonic/anharmonic phonon interactions that can be generated, we have
proposed setups for three-ion prototype simulators to investigate vibration-environment assisted
EET and anharmonicity induced quantum delocalization. We have generated preliminary results
via numerical simulations to guide future experiments. Our EET results for donor-acceptor pairs
involves transfer rate spectra with more complicated structures and they are in good consistency
with results in the literature. Simulations for delocalization indicate that spin-phonon coupling
is the primary factor leading to chaotic behavior, with the contribution of anharmonic coupling
between different phonon modes remaining inconclusive and requiring further investigation. We
have also identified potential inconsistencies between energy level statistics and other signatures
of quantum chaos, which could be another intriguing direction for future research. Overall,
results presented in this thesis provide a foundation for future experimental and theoretical
investigations in atomic and many-body quantum physics.

8 Appendix

8.1 Appendix A

For detailed derivation of results in this section, see Appendix of [32].

1D Equilibrium Position
The total potential energy of a N-ion system is given by the sum of trap potential and Coulomb
potential:

Vt =
M

2

N∑
n=1

3∑
i=1

ω2
i x

2
ni +

1

2

Q2

4πε0

N∑
n ̸=m

[
3∑
i=1

(xni − xmi)
2

]− 1
2

. (8.1)
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The equilibrium position along ẑ axis (i = 3) of the system is given by:

∂V

∂xn3
= 0. (8.2)

It is convenient to define a dimensionless position variable u that is related to the real position
by

unl0 = xn3, l0 =

(
Q2

4mπε0ω2
z

) 1
3

, (8.3)

l0 is the characteristic length scale of the system. The equilibrium position then be computed
numerically by solving a system of N equations of u, the qth component of these equations is
given by:

uq +

N∑
m=q+1

1

(um − uq)
2 −

q−1∑
m=0

1

(uq − um)
2 = 0. (8.4)

Tensors in Lagrangian The tensor A,C in Eq. (3.3), (3.6) are given by:

Amn =

{
1 + 2

∑N
p=1,p̸=m

1
|um−up|3

, m = n
−2

|um−un|3
, m ̸= n

(8.5)

Cmnp =

{∑N
q=1,q ̸=m

sgn(q−m)

(uq−um)4
, m = n = p

−sgn(p−m)

(up−um)4
, m = n ̸= p = 0,m ̸= n ̸= p

(8.6)

8.2 Appendix B

Derivation of Hamiltonian in ordinary interaction frame
To obtain the spin part of ĤI (Eq. (3.28)), use identity of SU(2) transformation:

e−
1
2 iθ⃗

̂⃗σ = Î cos

(
θ

2

)
− iθ̂̂⃗σ sin(θ

2

)
. (8.7)

Û†ĤsI Û =

[
Î cos

(
ω0t

2

)
+ iσ̂z sin

(
ω0t

2

)]
σ̂x

[
Î cos

(
ω0t

2

)
− iσ̂z sin

(
ω0t

2

)]
= cos2

(
ω0t

2

)
σ̂x + i (σ̂zσ̂x − σ̂xσ̂z) cos

(
ω0t

2

)
sin

(
ω0t

2

)
+ σ̂zσ̂xσ̂z sin

2

(
ω0t

2

)
= cos (ω0t)σ̂x − sin (ω0t)σ̂y

= eiω0tσ̂+ + e−iω0tσ̂−.

(8.8)

To obtain the phonon part, (Eq. (3.29)), consider the transformation for a specific phonon space
m , use the identity in Appendix of [37]:

exp[iωmtb̂
†
mb̂m] exp[ik(b̂†m + b̂m)] exp[−iωmtb̂†mb̂m] = exp

[
ik

(
b̂†me

iωmt + b̂me
−iωmt

)]
. (8.9)

which holds for some constant k. Therefore, neglecting the ion-index j, we have:

Û†ĤmI Û =
Ω

2
exp

∑
m

[
iζm

(
b̂†me

iωmt + b̂me
−iωmt

)]
e−i(ωLt−ϕ)

+
Ω

2
exp

∑
m

[
−iζm

(
b̂†me

iωmt + b̂me
−iωmt

)]
ei(ωLt−ϕ).

(8.10)
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in Lamb-Dicke Regime, we can expand the above Eq. to first order:

exp

[
±
∑
m

iζm

(
b̂†me

iωmt + b̂me
−iωmt

)]
= Î ±

∑
m

iζm

(
b̂†me

iωmt + b̂me
−iωmt

)
, (8.11)

Û†ĤmI Û =
Ω

2
Î
[
e−i(ωLt−ϕ) + ei(ωLt−ϕ)

]
+

Ω

2

∑
m

iζm
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b̂†me

iωmt + b̂me
−iωmt

)
e−i(ωLt−ϕ)

+
Ω

2

∑
m

−iζm
(
b̂†me

iωmt + b̂me
−iωmt

)
ei(ωLt−ϕ).

(8.12)

For derivation of (3.36), define phase constants:

ϕm =
1

2
(ϕb − ϕr) , ϕs =

1

2
(ϕb + ϕr + π), (8.13)

and two operators:

Â1 = i(−σ̂−e−iϕb + σ̂+eiϕr ) = i
(
σ̂+eiϕs − σ̂−e−iϕs

)
e−iϕm = σ̂ϕse−iϕm ,

Â2 = i(σ̂+eiϕb − σ̂−e−iϕr ) = i
(
σ̂+eiϕs − σ̂−e−iϕs

)
eiϕm = σ̂ϕseiϕm ,

(8.14)

Ĥ ′
I = Ĥr + Ĥb

=
Ω

2

∑
m

ζm

[
Â1b̂me

iδmt + Â2b̂
†
me

−iδmt + Â1b̂
†
me

i(ωm+µ)t + Â2b̂me
−i(ωm+µ)t

]
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Ω
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ϕs

[
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(
ei(δmt−ϕm) + e−i((ωm+µ)t−ϕm)

)
+ b̂†m

(
e−i(δmt−ϕm) + ei((ωm+µ)t−ϕm)

)]
.

(8.15)

Since
e∓i(δmt−ϕm) + e±i((ωm+µ)t−ϕm) = 2 cos(µt− ϕm)e±iωmt, (8.16)

Ĥ ′
I can be further simplified to:

Ĥ ′
I = Ω

∑
m

ζmσ̂
ϕs cos(µt− ϕm)(b̂me

−iωmt + b̂†me
iωmt). (8.17)

For the transformation of anharmonic part, consider the transformation of generic axial/radial

phonon operators âp, b̂
†
mb̂n, b̂

†
mb̂

†
n acting on phonon space labeled by p,m, n under unitary op-

erator Û = exp
(
−i

∑
q νqtâ

†
qâq

)
, Û = exp

(
−i

∑
q ωqtb̂

†
q b̂q

)
where νq, ωq are the axial/radial

harmonic energy level spacing of mode q. For the transformation of âp,

â′p = Û†âpÛ

= exp
(
ivpâ

†
pâp

)
exp

(
i
∑
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νqtâ

†
qâq

)
âp exp
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∑
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νtâ†qâq

)
exp

(
−ivptâ†pâp

)
.

(8.18)

Using commutator properties

[
∑
p ̸=q

νâ†qâq, âp] = 0
[
âp, â

†
pâp

]
= âp, (8.19)
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and Baker–Campbell–Hausdorff Formula [48],

e−B̂ÂeB̂ =
∑
n

1

n!

[
Â, B̂

]{n}
, (8.20)

â′p = âp
∑
n

1

n!
(−iνpt)n = e−iνptâp. (8.21)

Hence, âp picks up frequency e−iνpt in this transformation. Then consider the transforma-

tion of b̂†mb̂n which acts on some phonon spaces labeled by m,n under unitary operator Û =

exp
(
−i

∑
q ωqtâ

†
qâq

)
, ωq is the harmonic energy level spacing of space q. For b̂†mb̂n, ifm = n = k,
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∑
q ωq b̂

†
q b̂q so it will remain unchanged after transformation. If m ̸= n,[
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= ei(ωm−ωn)tb̂†mb̂n,

(8.22)

b̂†mb̂n picks up ei(ωm−ωn)t(consistent with m = n case). For b̂†mb̂
†
n, the case m ̸= n is just the

same as the above where it picks up a factor ei(ωm+ωn)t.
If m = n = k,

Û†b̂†k b̂kÛ

= exp
(
iωk b̂

†
k b̂k

)
exp

(
i
∑

q ̸=k
ωq b̂

†
q b̂q

)
b̂†k b̂

†
k exp

(
−i

∑
q ̸=k

ωq b̂
†
q b̂q

)
exp

(
−iωk b̂†k b̂k

)
= exp

(
iωk b̂

†
k b̂k

)
b̂†k b̂

†
k exp

(
−iωk b̂†k b̂k

)
= ei2ωktb̂†k b̂

†
k,

(8.23)

where we have used again used Baker–Campbell–Hausdorff and property
[
b̂†k b̂

†
k, b̂

†
k b̂k

]
= −2b̂†k b̂

†
k.

Summarizing the derivations above, âpb̂
†
mb̂n picks up a frequency ∆−

mnp and âpb̂
†
mb̂

†
n picks up

∆+
mnp.

∆±
mnp = ωm ± ωn − νp. (8.24)

Hence, equation (3.13) transforms to (3.37) in ordinary frame.

Derivation of Hamiltonian in resonant interaction frame
The Hamiltonian in resonant frame can be obtained in a similar way as the above derivations
for ordinary frame. The difference between these two frames is caused by the change in unitary
operator Û : ∑

m

νmâ
†
mâm → µ1

[∑
m

â†mâm

]
,

∑
m

ωmb̂
†
mâm → µ2

[∑
m

b̂†mb̂m

]
.

(8.25)
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To derive the new form of Hamiltonian, we can do the substitution:

νm → µ1, ωm → µ2. (8.26)

for all mode index m. Such a change of constant will not affect the validity of any step in the
sector above.
Therefore, in equation (3.36) this substitution is equivalent to:

δm → 0, ωm + µ→ 2µ. (8.27)

which results in equation (4.5). For the anharmonic term, now âpb̂
†
mb̂n picks up a frequency

∆
′−
mnp = −µ1 and âpb̂

†
mb̂

†
n picks up ∆

′+
mnp = 2µ2 − µ1, resulting in Eq. (4.20).

8.3 Appendix C

8.3.1 Thermal state and average phonon number

Assuming phonon energy ω0 and canonical ensemble with thermaldynamics parameter β =
1/KbT . The corresponding thermal state density matrix in fock basis is defined as

ρ̂th =
∑
n

pn |n⟩ ⟨n|, (8.28)

pn is the probability of being in phonon eigenstate |n⟩, neglecting the constant ground state
energy ω0,

pn =
1

Z
e−βnω0 , (8.29)

Z =
∑∞
n=0 e

−βnω0 is the partition function. The average phonon number is given by:

n̄ =
∑
n

pnn = − 1

ω0

∂lnZ

∂β

=
1

exp (βω0)− 1
. (8.30)

With given n̄, β can be found inversely:

β =
1

ω0
ln

(
1

n̄
+ 1

)
. (8.31)

The probability in equation (8.29) can be then rewritten in terms of n̄:

pn ∝ e−βnω0 =

(
1

n̄
+ 1

)−n

. (8.32)

Numerically we construct phonon state with a specified n̄ using (8.32) by initializing ρ̂th with(
1
n̄ + 1

)−n
and normalize the trace to 1.
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8.4 Appendix D

8.4.1 Relation between Decay rate and Dissipation in EET

We also tested the relation between near resonant transfer rate and dissipation. The result is
shown in Figure 24

Figure 24: Normalized transfer (ω0 = J12) rate as a function of effective cooling rate γ.

Same parameters as in 2 are used with ∆E = 2π × 100kHz (n = 1 resonance)

Qualitatively the result is consistent with [30]:

k ∝ 1

γ
, γ > J

k ∝ γ, γ < J. (8.33)
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